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XI. Statistical Properties of Large Scale Structure

The characterization of the distribution of galaxies and mass in the universe is
a well developed field, and only a few basic priciples will be outlined here. More
extensive discussions can be found in books by Peebles and others.

A. Two Point Correlation Function. RMS fluctuations in galaxy counts, mass in spheres

There are multiple ways to characterize the statistical properties of mass fluc-
tuations, all of which (at the level of detail that we are interested in) are equivalent
to one another. All methods capture the fact that mass is not distributed randomly
but rather that fluctuations are correlated, and the amplitude of the fluctuations is
larger on smaller scales.

We will describe three characterizations here: 1) the correlation fuction ξ(r),
b) the rms fluctuations (∆M/M)rms on mass scale M , and c) the power spectrum
P (k).

1. Correlation function

Let δ(r) = ∆ρ/ρ̄− 1 be the (dimensionless) density fluctuation field relative to
the mean densityρ̄. We note that δ is a function of time, but will suppress that
dependence for now.

We define the correlation function ξ(r) to be

ξ(r) = 〈δ(r′)δ(r′ + r)〉, (11.1)

or

ξ(r) =
1

V

∫
δ(~r′)δ(~r′ +~r)dV ′, (11.2)

where the expected value represents an average over r′. Formally, r and r′ are
vectors, and the average is one over 3 dimensions. For an isotropic universe, ξ(r)
depends only on the magnitude of r, not direction, and thus is a 1 dimensional
function. On scales of a few Mpc the universe today has a correlation function that
is nearly a power law:

ξ(r) ≈ (r/r0)γ . (11.3)

Observations show that power law index γ ≈ −1.8 and the correlation length r0 ≈
5h−1 Mpc, although the length depends on galaxy type.

2. Mass fluction spectrum.

For any volume of space encompassing an average mass M , the fractional excess
(or deficit) of mass is given by

∆M

M
(~r) =

(
1

V

) ∫ a

0
δ(~r + ~r′)dV ′, (11.4)
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where ~r is the location in space of the volume and a is the radius of the volume.
We are interested in the variance of this quantity:

〈(
∆M

M

)2〉
. (11.5)

We have
(

∆M

M

)2

=
(

1

V ′

)(
1

V ′′′′

) ∫ a

0

∫ a

0
δ(~r′ +~r)δ(~r + ~r′)dV ′dV ′′.. (11.6)

We average this quantity over all of space:

〈(
∆M

M

)2〉
=
(

1

V

)(
1

V ′

)(
1

V ′′′′

) ∫ a

0

∫ a

0
δ(~r′ +~r)δ(~r + ~r′)dV ′dV ′′dV

=
(

∆M

M

)2

=
(

1

V ′

)(
1

V ′′′′

) ∫ a

0

∫ a

0
ξ(~r′ −~r)dV ′dV ′′′′.

(11.7)

The last double integral is weighted average of the correlation function ξ(a) inside a
sphere of radius a; for our purposes, it is sufficient to know that this is approximately
equal to the correlation function evaluated at radius a.

3. Power spectrum.

It is simplest to peform a 1-dimensional calculation; the generalization to 3
dimensions is straightforward.

Consider a portion of space of length L. Let x be the space coordinate such
that −L/2 < x < L/2. Let δ(x) be the dimensionless perturbed density. We can
express δ(x) as a Fourier series:

δ(x) =
∞∑

n=0

An cos(
2πn

L
) +Bn sin(

2πn

L
). (11.8)

If we introduce α = 1
2(An + iBn) and extend the sum to −∞, we can write

δ(x) =
∞∑

n=−∞
αn exp(−2πixn/L). (11.9)

The coefficients are given by:

αn =
1

L

∫ L/2

−L/2
δ(x) exp(2πinx/L)dx. (11.10)

We seek to convert this to a integral formulation. Let k = n/L and F (k) =√
Lα(Lk). (The normalization of F is chosen to simplify the power spectrum cal-

culation later). The summation can be converted to an integral:
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δ(x) =
√
L
∫ ∞

−∞
F (k) exp(−2πikx)dk (11.11)

F (k) =
1√
L

∫ L/2

−L/2
δ(x) exp(2πikx)dx. (11.12)

The correlation function can be expressed as

ξ(z) =
1

L

∫ L/2

−L/2
δ(x)δ(x+ a)dx

=
∫ L/2

−L/2
dx
∫ ∞

−∞

∫ ∞

−∞
F (k)F (k′) exp(−2πikx) exp(−2πik′[x+ a])dkdk′.(11.13)

The integral from −L/2 to L/2 can now be extended to ±∞ so the integral over x
becomes a delta function of k + k′. Setting k′ = −k, we arrive at

ξ(a) =
∫ ∞

−∞
|F (k)|2 exp(2πika)dk. (11.14)

In three dimensions we get

ξ(~r) =
∫
|F (k)|2 exp(2πi~kdot~r)d3k. (11.15)

Only the real part of the complex exponential survives. If we align kz with ~r and

convert the k space to polar coordinates, we have ~kdot~r = kr cos(θ) and d3k =>
k2 sin(θ)dθdφ. Integrating over θ and φ, we have

∫
cos(2πkr cos θ) sin(θ)dθdφ =

sin(2πkr)

kr
. (11.16)

Thus,

ξ(r) =
∫ ∞

0
|F (k)|2 sin(2πkr)

kr
k2dk. (11.17)

This completes the computation of the inter-relationships among the three for-
mulations of density fluctuations.

B. Initial Fluctuation Spectrum

A useful approximation to the power spectrum is to assume that it has the form
of a power law: P (k) ∝ kn. Insert this form into Eq. (11.17) and integrating, we
find

ξ(r) ∝ 1

r
kn+2
max. (11.18)
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The integral is oscillatory for large k. There are standard “tricks” for taming such
behavior, and the result is that the integral is finite with kmax ≈ 1/r. Thus,

ξr ≈ r−(3+n). (11.19)

The mass fluctuation have the form

(
∆M

M

)2

∝ r−(3+n) ∝M−(3+n)/3 (11.20)

(since M ∝ r3). The rms fluctuation is thus

σM ∝M−(n+3)/6. (11.21)

The Harrison-Zel’dovich hypothesis holds that the rms mass fluctuation for
massses on the size of the horizon at any particular time is a constant κ. Once
inside the horizon the perturbations grow in size due to gravitational instability.
We would like to calculate the shape of the power spectrum today. The calcula-
tion of the growth factor in general is quite complex for perturbations that turn
into things that we see today such as galaxies and clusters because perturbations
of those scales entered the horizon during the radiation dominated epoch, when
baryons are tightly coupled to the radiation and effects such as radiation damping
are important. However, it is straightforward to calculate the growth factor for large
scale perturbations that entered the horizon during the matter dominated era.

The calculation proceeds as follows. Perturbations larger than the horizon size
do not grow at all. Once a perturbation enters the horizon it starts growing like
δ ∝ t2/3, as we showed in the last chapter. Today, at time t0, the rms amplitude
of a perturbation on mass scale M is given by σM = κ(t0/tH)2/3, where tH is the
time that that particular mass scale entered the horizon.

At any time the radius to the horizon is proptional to H−1, The density ρ ∝ H2,
and the mass MH ∝ ρr3 ∝ H−1. For a critically bound universe, H ∝ t−1

H , so
MH ∝ tH . Thus, today, the mass spectrum is σM ∝ M−2/3 = M−(n+3)/6. Solving
for n, we find n = 1. This spectrum is referred to as the “initial power spectrum”
and predicted by many standard models of inflation.

For lower mass perturbations that arose during the radiation era, growth is
suppressed due to the dominance of the radiation, which propagates perturbations
as sound waves rather than allowing large growth. The physics will not be pursued
here, but they are described in books such as Kolb and Turner, and in Dodelson
(??).

C. Press-Schechter Theory
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While the statistical description of mass fluctuations in the early universe is
relatively straightforward, the connection between small linear fluctuations at that
time and the highly nonlinear perturbations in the current universe is not trivial to
compute. Press and Schechter (1974) developed a simple methodology to character-
ize the number distribution of bound objects as a function of mass that qualitatively
seems to describe the luminosity function of galaxies and mass function of galaxy
clusters reasonably well.

Consider a volume of universe V with mass density today of ρ0. In current
cosmological models that involve dark energy, the mass density refers only to that
of dark matter and other mass components that are cold and and cluster in bound
systems. Consider the state of such a volume at an early time ti when the density
fluctuations were small. Divide the volume into a number of equal sized regions
with mean mass per region of M and true total mass in region i of M(1 + δi). Let
F (M, δ) be the fraction of regions measured on mass scale M with mean overdensity
≤ δ. In a universe with a Gaussian distribution of fluctuations, the function F is
given by

∂F

∂δ
=

1√
2πσM

e
− δ2

M
2σ2
M (11.22)

where σM is the rms value of δ on mass scale M . One can repeat the exercise for
different mass scales M . The normalization is chosen such that F = 1 when δ =∞.
As the volume of universe evolves, overdense regions grow, and those regions with
overdensities greater than some δcrit collapse. On a given mass scale M , the fraction
of regions that collapse is given by

Fcollapsed =
1√

2πσM

∫ ∞

δcrit
e
− δ2

M
2σ2
M dδ (11.23)

=
1√
2π

∫ ∞
δcrit
σM

e−
x2

2 dx. (11.24)

One can repeat the same calculation on a slightly larger mass scale M+∆M . For
any sensible mass spectrum, the fraction of regions that have collapsed on the larger
scale is slightly less than that on the smaller scale. Note that these calculations are
simply different characterizations of the same physical volume. Most of the collapsed
regions on mass scale M are not intact but are subsumed into slight larger regions
of mass M + ∆M . Press and Schechter argue that the small fraction of regions
of mass M not subsumed into larger regions should survive as intact objects. The
number of such regions is given by

∆n = −[F (δcrit,M + ∆M)− F (δcrit,M)]
ρ0

M
, (11.25)

where n has units of number of objects per volume. With a bit of manipulation of
the equation for F , this equation becomes

dn

dM
=− dF

dM

ρ0

M
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=− ρ0

M

1√
2π

δcrit
σ2
M

dσM
dM

e
− δ

2
crit

2σ2
M . (11.26)

The above process applies only to half the mass in the volume, that in overdense
regions. The underdense regions will empty out and pile up mass on surrounding
shells. Press and Schechter argue (not entirely convincingly) that this mass will
also form into bound regions and have a number distribution like the overdense
regions above, such that the total number density is actually twice that in the
above equation. Thus, the final number density is given by

dn

d lnM
= − ρ0

M

√
2

π

δcrit
σM

d lnσM
d lnM

e
− δ

2
crit

2σ2
M . (11.27)

To proceed further we need an expression for the amplitude of the perturbation
spectrum σM and we need to tie the critical overdensity δcrit to some observable
quantity today. Inflation theories predict that the initial fluctuation spectrum has
a nearly power law dependence of the form:

σM ∝M−(3+n)/6 = M−α, (11.28)

where n is a constant characterizing the initial power spectrum of density fluctua-
tions. Again, inflation theories predict n ≈ −1.

To tie the amplitude to an observable quantity today, it is first necessary to
return to the concept of linear growth factor. Small amplitude density perturbations
grow in time at a rate that is the same regardless of the initial amplitude or mass
scale of the perturbation. Equation 10.15 gives an explicit expression for this growth
rate in a critically bound matter-dominated universe. In general it is conventional
to define a function D(z) that gives the ratio of the size of a linear perturbation at
the time corresponding to redshift z to the size of that perturbation today. For a
critically bound matter dominated universe, we have D(z) = (1 + z)−1.

The standard convention for defining the amplitude of the perturbation spec-
trum is to use a quantity called σ8, which is almost (but not quite) the rms density
fluctuation today in spheres of radius 8h−1 Mpc. Observationally the true density
fluctuation on this scale is about unity, which means that one cannot quite use the
linear growth factor D(z) to express the amplitude of the density fluctuations at
any time in the past. Let M8 be the mass inside the 8h−1 Mpc sphere and σ8(z) be
the rms amplitude of density fluctuations on this mass scale at an early epoch of
the universe when such fluctuations are small enough that the linear approximation
holds. σ8 is defined to be the amplitude that these perturbations would have today
assuming that the linear approximation were still valid: σ8 = σ8(z)/D(z). The
difference between this extrapolated value and the true rms value of density pertur-
bations on this mass scale today is small (less than 10%) and depends somewhat
on the exact cosmology.
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Return now to equation xxx for the Press-Schechter spectrum. It is convenient
define a mass scale M∗ for which a positive density perturbation of exactly 1 σ is
just collapsing today. By Eq. (10.15), we see that in the linear approximation, such
a region would have an overdensity of 1.69 today. We can thus express M∗ in units
of σ8 and M8 as follows:

1.69

σ8
=
(
M∗
M8

)−α
, (11.29)

or

M∗ = M8

(
σ8

1.69

)1/α

. (11.30)

With the above definition of M∗, we immediately find that the critical overden-
sity δcrit in Eq. (XX) is given by δcrit = σ(M∗). At some earlier epoch, the required
overdensity is larger, and we have δcrit(z) = σ(M∗)/D(z) (with M∗ still being its
present day value). With this generalization, the Press Schechter mass function can
finally be written in the form:

dn

d lnM
=

ρ0

M∗

√
2

π

M∗
M

1

D(z)

(
M

M∗

)α
α e
− 1

2D(z)2

(
M
M∗

)2α

. (11.31)

In this equation, ρ0 and M∗ refer to values at z = 0.


